A Great Science Teacher Quit Because US Schools Are Broken

Why do some of the best science teachers quit teaching?

Teachers_Quanta.jpg

Early in the morning on Monday, May 23, the uptown 5 train lurches skyward from its subterranean shaft, rising into the light of the Bronx. The cars groan as they lumber over elevated tracks high above the avenues, bodegas and detached homes, alongside treetops and the Escher-esque maze of rusty low-rise fire escapes. Twelve stops later, just shy of the end of the line, the few remaining riders wander out onto Baychester Avenue. Up the hill sits a squat, checker-patterned building with a triangle-wave marquee that is home to Baychester Middle School.

Quanta Magazine

Original story reprinted with permission from Quanta Magazine, an editorially independent division of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences

The bell blares. Upstairs in the “Cornell University” homeroom, so named to get kids thinking early and often about college, Channa Comer addresses her students with a big voice and an even bigger Cheshire cat smile: “Cornell, 10 seconds to take out your homework, 10, 9, 8 … ” The students scramble, rifling through their backpacks, until they are all seated at their desks with their notebooks in front of them. They all wear blue school-issued shirts with big white letters across their backs. Over the course of the year, they earn shirts with letters that spell TRY, TRUST, TRAIN or THANK. Today the shirts say TRY.

All around them are reminders to try, including posters that advise: “Life is complicated: Let’s deal with it,” and “Think like a proton and be positive.” In front of the classroom, printed above a whiteboard with the day’s schedule, are vocabulary words like “parameter,” “syntax” and “data type,” along with their definitions. A shelf at the back of the room holds clear containers packed with pine cones and shells. Below are containers for compost, soil, plants, rocks, starfish and safety goggles.

Standing 5 feet 1 in two-inch-high platform sandals, Comer projects an outsize presence. Her voice easily fills the room, but she rarely raises it, except to let loose a mammoth laugh or to sing the praises of a student—today it’s Shawnay—who got 100 on her scorecard for good behavior. Comer has an athletic build that comes from years of martial arts and marathon training, not to mention amateur competitive bodybuilding, activities that have taken a toll on her now bandaged 40-something-year-old knees. A naturally inquisitive serial career changer, Comer took advanced biology courses as a nursing student, studied some physics and engineering for a job coordinating the construction of group homes, and, after becoming a teacher, spent several summer vacations conducting scientific field research.

“There’s nothing that has no relationship to science,” Comer said after the class. “It’s very important to me that students know how the world around them functions.”

But learning science is like learning another language, she said, and only 10 percent of Baychester’s students read English at or above grade level. Complicating matters, elementary school teachers vary widely in their interest or ability to teach science. By the time kids arrive in Comer’s sixth-grade class, some have had virtually no science, some have only read textbooks, while others have been doing full-on experiments. Even at the middle school level, she said, “science is not a priority because of testing. The high stakes of math and [language arts], that’s what kids get promoted based on and what teachers get rated based on.”

Complicating matters further, the school sits opposite the borough’s largest public housing complex, with 42 buildings, 2,000 apartments and a history of gang violence.

Comer does anything and everything, including videos, songs (she has students clap and chant: “S-C-I-E-N-C-E, scientists is what we’ll be! Solve. Create. Investigate. Evaluate. Notice. Classify. Experiment!”), kinesthetic movements (on this morning, she calls students up to act out how molecules behave), physical models (students roll little balls of Play-Doh to model molecular characteristics) and analytical reading to “ensure that every kid gets some point of access based on their level.” Throughout her lessons she interrogates students with reflexive urgency: “What’s your evidence? I need to know,” followed by the kicker, “How do you know?” Then come hands-on experiments to reinforce meaning and evoke wonder.

But when she started her teaching career in 2007, at a small Bronx high school called Urban Assembly Academy of History and Citizenship for Young Men that has since closed, on many an evening Comer curled into a fetal position on her bed, crying. “I was jumping through hoops, standing on my head, trying to get kids interested,” she said. “Every day I get home and I felt like I just did battle.” She remembers starting a unit on the human body, thinking, “Everyone wants to know about their bodies.” She was blindsided when a student said, “Ah, miss, I don’t care how it works as long as it works.” She knew she needed to drop to a lower grade where she could get kids excited about science.

At the sixth-grade level, Comer said, “I’m not concerned that students remember everything or can regurgitate information. I feel that if they really have a level of engagement, they’ll learn all the nuts and bolts.”

After four years at the high school level, Comer became the founding sixth-grade science teacher at Baychester. Shawn Mangar, the school’s founding principal, said that soon after Comer was hired, she showed up in a U-Haul loaded with science materials she had purchased over the years, eliciting an “Are you serious?” from security staff. And last year, she took the popular rap song that all the kids were singing—“Trap Queen” by Fetty Wap, about a guy teaching his girlfriend how to make crack cocaine—found the background music and organized a competition for students to rewrite the lyrics with science content. The winning students performed their remake—about the water cycle—at the Science Genius competition at Columbia University. Comer also started an after-school engineering club with funding from the SECME consortium of universities and later received a $2,500 Summer of Innovation grant from NASA to purchase supplies for it. “Those kinds of things she makes happen,” Mangar said.

Comer is also known for her dogged insistence that students solve their own problems. Too often, said Vice Principal Elizabeth Leebens, students “get the history of science rather than getting an opportunity to do it for themselves.” Still, Leebens was surprised when, after a group of science club students asked Comer for help with their ice-cream-making experiment, which had already failed seven sticky times, Comer told them, “Go back and check your process.” Off they went to the bathroom to dump the latest batch and start over.

“I call it productive struggle,” Comer said. “That’s where the growth happens.”

In meetings, Leebens said, Comer has “challenged me to stop doing the cognitive work for kids: ‘Let them do it themselves. They can do it; they can do it.’” For Comer, she added, it’s about “life lessons and also high expectations for kids in letting them see what they can do before the adult decides what they can do.”
With all the messages out there telling Baychester students what they can’t do, Comer will not give up on them, and she won’t let them give up on themselves. “These are my kids,” she said. “This is my community.”

Trust

That Friday, two men are shot in a car just steps from Baychester Middle School. Both are taken to nearby Jacobi Medical Center, where one dies. A crime scene unit seals off Baychester Avenue.

The school day begins as usual. After lunch, students from the “UC San Diego” homeroom arrive in Comer’s classroom for science. “Good afternoon, San Diego,” she says, beaming.

“Good afternoon, Miss Comer!”

“We’re going to be continuing with our toy car labs,” Comer announces. A highlight of her simple-machines unit, the lab involves building a ramp and testing how fast a toy car rolls down when the ramp is covered with different materials. “What’s the concept that we’re studying with the toy car lab?”

Mylani raises her hand. “Friction.”

“What is friction?” Comer asks. A few students offer partial answers. “We said it was a force, we said it has to do with surfaces, it has to do with slowing things down. Who can put it all together into one neat package?” After another try, she calls on Cameron, a soft-spoken boy who didn’t get along with her at first but is now one of her top students.

“It’s a force between two surfaces that makes moving an object easy or difficult,” Cameron says.

Soon students are buzzing in groups, defining roles and deciding which coverings to put on their ramps. As Comer monitors their progress, she probes individual students to gauge understanding. “Why is the speed of the car the dependent variable?” Two of Cameron’s teammates correctly explain that it depends on the covering on the ramp. Then: “What’s the independent variable?”

“The covering on the ramp,” Sincere answers. He and another boy sport Baychester blue headbands with orange letters that spell TRAIN.

“What is the control in your experiment?” Comer asks. This stumps the group. “Well, what is a control?” she prods. Blank stares. She decides to review these concepts with the entire class.

Again, what does independent variable mean? And a dependent variable is what? Then Comer asks for the definition of an experimental control. “Don’t give me a list.”

Brittany offers, “Something that stays the same in your experiment?”

Now Comer has groups of students list everything they can think of that needs to stay the same: There’s the car, the books beneath the ramp, the stopwatch, and so on. Several teams tally eight controls. One group has found eight, but not the same eight. They’ve identified a control the other groups hadn’t thought of: the person who releases the toy car down the ramp. “That’s nine,” Comer says, smiling, “but then there’s the eighth one that you’re missing.”

“The ramp … ”

“The ramp!” Comer exclaims, pointing at one student while talking to another. “She has ‘ramp.’ You have ‘position of ramp.’ That’s two different things.”

“Oh, that’s why!”

Comer turns to the rest of the class and happily announces, “We made a discovery at this table!”

When she’s satisfied that everyone groks the basics, off the kids go to gather their materials and build their ramps. The classroom becomes a construction zone. Shawn Mangar, the principal, called Comer’s class the loudest at the school, but loud for the right reasons: Students are thinking and learning in “controlled intellectual chaos.”

And it works: “In the beginning of the year I wasn’t really interested in science because at my old school we didn’t do a lot of science,” Shomari said after class. But now, she said, “what I like about science is that you can experiment with different things and you can challenge other people’s opinions.”

Likewise, Cameron said that at his old school, “we just read textbooks and stuff.” He loves the hands-on projects and the fact that Comer goes “deeper into things.” Last winter, when there was ice on the ground, he thought about friction and where to place his feet to avoid slipping and falling. “I like the way that she teaches,” he said. “She never rushes. We just take our time.”

The school’s founders never planned for science to be a focal point at Baychester. “We never expected it to take off the way it did,” Mangar said, crediting Comer. “You can see a student struggling in two or three classes and all of a sudden they’re a rock star in science class.”

Train

When Comer decides to do something, she’s not one to just dip a toe. Years ago, at a bodybuilding show, she looked at the woman who won and thought, “I could do that.” So she did, training two to three hours a day, radically altering her diet, taking supplements like medium-chain triglycerides (to burn fat) and zinc (to increase blood flow and vascularity), tanning and practicing poses. “It’s a crazy lifestyle,” she said. “It costs so much and you can’t walk past a store without checking your muscles.”

She quit bodybuilding after four years out of concern for her metabolism, pocketbook and humility. Now she’s into yoga and belly dancing, both of which she’s certified to teach. When she became a science teacher nine years ago, she threw herself into the work just as she does with everything else. She trained hard over weekends and summers, partly for the extra income—some professional development (PD) fellowships offer generous stipends—but also to “build my own content knowledge, because I came into this with a scattering of science in different areas,” she said.

“She's done more PD than any other teacher I know and is constantly integrating what she learns into her curriculum,” said Michael Zitolo, a friend who teaches high school physics at School of the Future in Manhattan.

Among her teacher friends, Comer said, “I’m known as a PD junkie.” During her first year as a teacher, she wanted to observe more accomplished teachers, but she and the other two science teachers at Urban Assembly Academy were all relatively inexperienced. So she convinced her principal to let her spend one day a month observing teachers at other schools. One month, she visited New Design High School on the Lower East Side to observe David Rothauser, a teacher known for giving students ambitious design challenges. “That’s when I started doing engineering design challenges and using ‘design thinking,’” she said. Design thinking involves figuring out “all the different ways we could solve a problem.” Many of her former high school students who didn’t go to college now work for the parks department, in restaurants or in retail. Without marketable skills like design thinking, she said, “those are the only things that are available to them. I think the whole system needs to be changed and the focus needs to be on thinking and not so much on facts.”

Rothauser said he was immediately impressed with Comer’s ability “to improvise within the system,” adding that “it felt wonderful to be discovered by her in that way.” Comer went on to become a master fellow in the Sci-Ed Innovators program he was helping to run, and later joined the leadership team.

Over the next several summers, Comer participated in teacher research programs in neuroscience, nanotechnology and robotics, took workshops in molecular biology at Cornell University, and participated in sea scallop surveys with the National Oceanic and Atmospheric Administration. Comer and Zitolo became fast friends during the Summer Research Program at Columbia, which she considers one of the best PD opportunities because it runs for two consecutive summers in the same laboratory, offers a generous stipend, involves collaboration with experts, and focuses on both research and pedagogy. The two have also participated together in the Smarter program at New York University’s Polytechnic School of Engineering, and they were Sci-Ed fellows the same year. All three of these extended programs provide training that goes well beyond what’s offered in the one-off workshops that many teachers attend. They also include “a mechanism for follow-up to assess implementation and effectiveness of the PD,” Comer said. “In my experience, the programs that I have participated in that fit these criteria have had the greatest impact on my teaching practice.” However, a paradigm shift in professional development will not come easily. “Teachers have been conditioned to expect PD where they walk away with something that they can use in their classroom immediately, rather than working through a process that may take some time to develop and yield results.”

Thank

On July 28, exactly a month into summer break, Channa Comer is in her Bronx apartment, hemmed in by plants, keepsakes from overseas research trips, a rack of immaculate vintage clothing she plans to sell online, and her two timid cats, Lucy Luu and Teena Turner. She’s sorting through boxes of quirky drawings and letters from some of the estimated 1,000 kids she’s taught over the past nine years. She has moving companies to interview and boxes to pack.

Comer waited until the last week of school to break the news to her students, not wanting it to be a distraction. She was leaving Baychester Middle School. She was done teaching.

“I love these kids. I love them,” she said. “But the system, I think, is extremely flawed, and I just need a break.”

In late August, she began her move to Maryland, where she could commute to the Department of Energy’s Office of Science in Washington, D.C. Months earlier, she had been accepted into the Albert Einstein Distinguished Educator fellowship program, where she hopes to gain a broader perspective on national educational policy.

Why do master math and science teachers, who are passionate about their content area and about developing their craft, who are creative, smart and engaging, and who adore their students—why do they quit teaching? Some have given all they can; they’re burned out from thinking and worrying about their students seven days a week, and from battling with school officials over resources, scheduling, a shortage of support, and an abundance of rigidity. Often these talented, driven individuals are lured away by career options that offer greater professional stature and higher pay. And some are just so naturally adventurous that they were always bound to move on. For Comer, it was all of the above.

“I’m really proud of the body of work that I’ve built as a teacher,” she said. “I don’t know how it will be to be in an office all day instead of in the classroom dealing with students and meltdowns and singing and dancing.” But there are some things about teaching she will not miss: “There needs to be much more flexibility, much more autonomy given to teachers to be able to create and teach to their passion so that they can engage students more deeply.”

By all accounts, including Comer’s, she was given extraordinary freedom and flexibility by her principal and school. “Channa’s earned the ability to do things her way,” said Principal Mangar. “Anytime she’s asked for something, or asked, ‘Can I try something?’ she’s outperformed expectations. I see myself as an offensive lineman—clear the way for her to be able to do good work.”

Still, she got dinged (by administrators other than Mangar) for transgressions like failing to write a learning objective on the board before every class. Comer says she did not have time for that after class periods were shortened from almost an hour to 45 minutes. And besides, her projects and learning objectives, which students recorded in their notebooks, took days or weeks to complete.

“It’s an incredible loss for her students and her school because through all her experiences and bringing them back to the classroom, whatever teacher comes next can’t bring what she brings,” said Zitolo, who admits that the Einstein fellowship is a logical next step for his friend. He hopes her voice will be powerful at the national level, that she can push for fewer discrete standards and more “big-picture ones” like the Next Generation Science Standards.

“You can’t replace someone’s passion,” Mangar agreed. For his part, he hopes Comer will return after her 11-month fellowship ends. “I have a calendar reminder for when to contact her,” he said. “She’s always welcome. This will always be home.”

Even in the chaos of relocating across state lines and dealing with broken elevators, gridlock, a thunderstorm, moving company miscalculations, and other delays, Comer found time to pen a lengthy email criticizing the way science is currently taught: “I think we are approaching it wrong. I don't think science at the lower levels should be separated into discrete subjects, but rather integrated and taught in the context of real life.”

She said she would be happy to discuss these ideas further, and that she’d be back in New York until August 24, after which she’d be in Maryland “for good.”

Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.