The Blue Brain

Henry Markram, the director of the Blue Brain project, recently delivered a talk at TED that’s gotten lots of press coverage. (It was the lead story on the BBC for a few hours…) Not surprisingly, all the coverage focused on the same stunningly ambitious claim, which is Markram’s assertion that an artificial brain is “ten […]

Henry Markram, the director of the Blue Brain project, recently delivered a talk at TED that's gotten lots of press coverage. (It was the lead story on the BBC for a few hours...) Not surprisingly, all the coverage focused on the same stunningly ambitious claim, which is Markram's assertion that an artificial brain is "ten years away". I haven't heard the talk, so I don't know the context for the remark, but I did spend a few days with Markram a few years ago. The first thing to note about Markram is that he's incredibly brilliant and persuasive. I might be skeptical about the singularity, but I'd still be reluctant to bet against Henry and the Blue Brain team. The second thing to note is that the ten years timeframe - the one remark that gets spliced into every headline - isn't intended as a literal estimate. Two years ago, when I met with Markram, an artificial brain was "approximately ten years away." The point is that nobody knows how long it will take, since we don't even know what we don't know. I think Markram is using "ten years" as a way to suggest that the end goal - a simulation of human consciousness on a supercomputer - is both feasible and remote. It's technically possible, but only if the next decade goes according to plan. And when has that ever happened?

If you'd like to learn more about the Blue Brain, check out my old feature on the project:

In the basement of a university in Lausanne, Switzerland sit four black boxes, each about the size of a refrigerator, and filled with 2,000 IBM microchips stacked in repeating rows. Together they form the processing core of a machine that can handle 22.8 trillion operations per second. It contains no moving parts and is eerily silent. When the computer is turned on, the only thing you can hear is the continuous sigh of the massive air conditioner. This is Blue Brain.

The name of the supercomputer is literal: Each of its microchips has been programmed to act just like a real neuron in a real brain. The behavior of the computer replicates, with shocking precision, the cellular events unfolding inside a mind. "This is the first model of the brain that has been built from the bottom-up," says Henry Markram, a neuroscientist at Ecole Polytechnique Fédérale de Lausanne (EPFL) and the director of the Blue Brain project. "There are lots of models out there, but this is the only one that is totally biologically accurate. We began with the most basic facts about the brain and just worked from there."

Before the Blue Brain project launched, Markram had likened it to the Human Genome Project, a comparison that some found ridiculous and others dismissed as mere self-promotion. When he launched the project in the summer of 2005, as a joint venture with IBM, there was still no shortage of skepticism. Scientists criticized the project as an expensive pipedream, a blatant waste of money and talent. Neuroscience didn't need a supercomputer, they argued; it needed more molecular biologists. Terry Sejnowski, an eminent computational neuroscientist at the Salk Institute, declared that Blue Brain was "bound to fail," for the mind remained too mysterious to model. But Markram's attitude was very different. "I wanted to model the brain because we didn't understand it," he says. "The best way to figure out how something works is to try to build it from scratch."

The Blue Brain project is now at a crucial juncture. The first phase of the project--"the feasibility phase"--is coming to a close. The skeptics, for the most part, have been proven wrong. It took less than two years for the Blue Brain supercomputer to accurately simulate a neocortical column, which is a tiny slice of brain containing approximately 10,000 neurons, with about 30 million synaptic connections between them. "The column has been built and it runs," Markram says. "Now we just have to scale it up." Blue Brain scientists are confident that, at some point in the next few years, they will be able to start simulating an entire brain. "If we build this brain right, it will do everything," Markram says. I ask him if that includes selfconsciousness: Is it really possible to put a ghost into a machine? "When I say everything, I mean everything," he says, and a mischievous smile spreads across his face.